
Processor Interface Protocols for Facilitating
Detection-Level Data Fusion

November 1998

Gilbert L. Crouse, Jr.
BBN Technologies

1300 North 17th Street
Arlington, VA 22209

LT John Park
Space and Naval Warfare

Systems Command
4301 Pacific Highway

San Diego, CA 92110-3127

ABSTRACT
Sharing track-level contact information across multiple
processors and platforms is relatively commonplace now in
combat systems. This has been greatly facilitated by the
development of communications standards for passing track-
level data. However, for more effective data fusion and for
operator confirmation purposes, it is often very desirable to
share lower level detection and classification data products as
well as portions of raw or semi-processed sensor data. Sharing
these types of data is often impeded by the need to translate
between the different data formats used by the systems involved.
Moreover, merely obtaining connectivity between individual
stovepiped processing systems is often nontrivial. The work
described in this paper is an on-going attempt to develop
standard protocols and data formats for communication of
lower-level data products between multiple processing systems.
The initial effort for this work has been focused on the Under-
Sea Warfare community, but the protocols are not exclusively
applicable to sonar systems.

1. INTRODUCTION
Detection, classification, and tracking of modern nuclear and diesel-electric submarines have
grown increasingly difficult with improvements in quieting technology. Maintaining reasonable
detection ranges has required improvements in sensor systems, processing systems, and also
increases in the sheer numbers and types of sensors employed. Obtaining the maximum benefit
of greater numbers and types of sensors requires that the operation of these sensors be done in
concert. In many current systems, however, there is little communication between different
platforms prosecuting the same target or even between different sensor systems on the same
platform. Each sensor system has dedicated operators whose only knowledge of the scene is the
information provided by their sensor. Data exchange between on-board and off-board systems is

Approved for public release; distribution is
unlimited.

REPORT DOCUMENTATION PAGE Form Approved OMB No.
0704-0188

Public reporting burder for this collection of information is estibated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing
and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burder to Department of Defense, Washington
Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of
law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
01-11-1998

2. REPORT TYPE
Conference Proceedings

3. DATES COVERED (FROM - TO)
xx-xx-1998 to xx-xx-1998

4. TITLE AND SUBTITLE
Processor Interface Protocols for Facilitating Detection-Level Data Fusion
Unclassified

5a. CONTRACT NUMBER
5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Crouse, Jr., Gilbert L. ;
Park, John ;

5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME AND ADDRESS
BBN Technologies
1300 North 17th Street
Arlington, VA22209

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING/MONITORING AGENCY NAME AND ADDRESS
Director, CECOM RDEC
Night Vision and Electronic Sensors Directorate, Security Team
10221 Burbeck Road
Ft. Belvoir, VA22060-5806

10. SPONSOR/MONITOR'S ACRONYM(S)
11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
APUBLIC RELEASE
,
13. SUPPLEMENTARY NOTES
See Also ADM201041, 1998 IRIS Proceedings on CD-ROM.
14. ABSTRACT
Sharing track-level contact information across multiple processors and platforms is relatively commonplace now in combat systems. This has
been greatly facilitated by the development of communications standards for passing tracklevel data. However, for more effective data fusion
and for operator confirmation purposes, it is often very desirable to share lower level detection and classification data products as well as
portions of raw or semi-processed sensor data. Sharing these types of data is often impeded by the need to translate between the different data
formats used by the systems involved. Moreover, merely obtaining connectivity between individual stovepiped processing systems is often
nontrivial. The work described in this paper is an on-going attempt to develop standard protocols and data formats for communication of
lower-level data products between multiple processing systems. The initial effort for this work has been focused on the Under- Sea Warfare
community, but the protocols are not exclusively applicable to sonar systems.
15. SUBJECT TERMS
16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT
Public Release

18.
NUMBER
OF PAGES
7

19. NAME OF RESPONSIBLE PERSON
Fenster, Lynn
lfenster@dtic.mil

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

19b. TELEPHONE NUMBER
International Area Code
Area Code Telephone Number
703767-9007
DSN
427-9007

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39.18

generally limited to the exchange of contact position reports. The exchange of lower-level data
products holds the promise of improved detection and tracking performance of the aggregate
system. For example, individual sensor systems may detect a target well before they can develop
a confirmed track. By sharing data at a lower level, the detection information could be used to
cue operators of other sensor systems. The capabilities of the group of sensor could then be used
to confirm or reject the possible contact and develop a track before the individual sensor system
could have done it working in isolation. This holds true for both human operators and computer
data fusion systems.

In order to support data fusion efforts as well as other applications, the processor interface
protocols have been designed with several data transfer modes including continuous data stream
mode, data “snippet” mode, and text or data file transfer mode. In continuous data stream mode,
data regularly or irregularly sampled in time is continuously transferred from the originating
system to a single or to multiple client systems that receive the data. This is envisioned to
support transfer of raw or partially processed data to other systems for display or further
processing in near real time. The data snippet mode would be used for recall of portions of data
for display or reprocessing. For example, this mode could be used to support an operator
recalling sections of data in order to evaluate autodetector or autoclassifier decisions. The file
transfer mode is meant to support transfer of arbitrary data between systems. For example, this
could include operator notes, image files, or processing parameter files. In addition, an
“instantaneous” messaging capability is envisioned to allow operators to send alert messages to
other operators in a timely fashion.

The Internet community has defined a wide variety of standard, commercial data transfer
protocols. With the military’s move toward commercial computing and communications
equipment firmly in place, the processor interface protocols working group has attempted to use
commercial standards wherever appropriate. The underlying assumption of the working group
was that physical communications between processors would be based on some type of IP
network.

2. Design Considerations
In considering the desired functionality of the interface protocols, several requirements were
identified. These include

1. Continuous transfer of raw or processed data streams between multiple processing
systems

2. Transfer of portions or raw or processed data streams between processing systems
3. Transfer of arbitrary files between processing systems
4. Data spooling for snippet recall and data archival
5. Query of available data streams for continuous or snippet transfers
6. Query of parameters associated with particular data streams
7. Notification when parameters associated with a particular data stream change
8. Dynamic hookup of data streams
9. Browsing of participating systems (e.g., “network neighborhood”)
10. Immediate transfer of alert messages between processing systems

In addition to the functionality requirements, several constraints were also identified, primarily
related to the desire to interface to legacy systems and the limitations of the communications
channels.

1. Support for legacy systems
• Desire minimal intrusion into the processing systems
• Supporting the interface protocols should not place significant burdens on the

resources of the processing systems
• Must support various processing scheduling approaches used by different

processing systems (e.g., data flow, event loop, polling)
2. Support for inter-platform connectivity (i.e., ship-to-ship)

• Available communications bandwidth will be limited
• Network connections may be unreliable due to RF communication links

Wide Area
Communications Network
(Ethernet, ATM, FDDI, ...)

Processing
System A

Data
Manager

Data
Manager

Data
Manager

Data
Manager

Data
Manager

Adjunct
Processor

Processing
System B

Data Fusion
Processing

System

Data
Visualization
Workstation

Figure 1. Example cluster of processing systems.

3. APPROACH

3.1. Data Manager
A cluster of processing systems communicating via the processor interface protocol is depicted
in Figure 1. Each processing system participating in the cluster is paired with a “data manager”
that has several functions, including:

1. File Server. The data manager serves as an HTTP server. Any files that the
processing system wishes to make available are handed over to the data manager and
the data manager services request for those files.

2. Data Spooler. Any streams of data that the processing system will make available to
other systems are transferred in real time to the data manager. The data manager
retains a spool of the data on disk for some length of time.

3. Streaming Data Server. Using the RTP/RTSP protocols, the data manager makes
streams of data or portions of streams available to the other processing systems. The
data manager can continuously transfer a data stream or the client can request that
only a portion be transferred. The list of available data streams is maintained by the
data manager as a file that can be requested via the HTTP server.

4. Cluster Browser Server. Each data manager maintains a list of all other data
managers participating in the cluster. This list is made available on demand to the
processing system via HTTP. The list of participating processing systems is
maintained through the use of multicast messages. Each participating data manager
sends out a multicast message periodically. Each data manager also listens for those
messages from other processors in order to determine what other systems are
available.

5. Synchronous Messaging Server. The data manager can transmit alert messages to
other processing systems. The data manager maintains a list of the systems that are
registered to receive the messages and when instructed will send a message to the
designated recipient. The message will be transferred immediately and thus will not
suffer the indeterminate delays associated with email.

The data manager itself consists of several software programs. Unless they are designed to
support it, most processing systems will not have the spare processing and storage resources
available to host the data manager. Thus in most cases, the data manager will need to reside on a
separate computer or processing board. The data manager is being designed to be portable and to
run on UNIX systems or inexpensive Windows NT PCs. This minimizes the additional cost
associated with adapting a system so that it can use the processor interface protocols. While it is
assumed that the data managers are connected together via a WAN with limited bandwidth, it is
assumed that the link between the data manager and its associated processing system are local to
one another and have a fairly high-speed link.

The interface between the processing system and the data manager is specified in terms of an
application-programming interface. A reference implementation of the interface using an IP
socket-based protocol is currently being developed along with the data manager. This interface
library supports control of the data manager, transfer of data streams to the data manager,
publishing of arbitrary data files (text files, images, parameter files, etc…) through the data
manager, and transmission of alert messages to other processing systems.

Since HTTP is the primary protocol used for transfer of data files and control information
between systems, standard WWW browsers can be used to view many of the files on the data
manager. Each data manager maintains several pages with predefined names that clients can
request. These include

1. /data_managers.html : This file contains a list of all of the active data
managers in the cluster. This file is primarily used by data clients local to the data
manager so that they can locate sources of data.

2. /data_clients.html : This file contains a list of all of the active data clients in
the cluster. This file is primarily used to identify data clients for sending alert
messages to other operators.

3. /data_files/all.html : This file contains an index of all of the data files that
are available on the data manager.

4. /data_streams/all.html : This file contains an index of all of the data
streams that are available on the data manager.

5. /data_streams/streamid=??? : This file contains a description of the data
stream referenced by the given streamid.

These files use standard HTML formatting and contain hyperlinks to facilitate browsing using a
standard WWW browser. In addition, browser add-ins are planned to enable viewing of data
files from within a WWW browser.

3.2. Data Clients
Systems that wish to access data from other processor use a data client library that communicates
with the other processor’s data manager. This client library handles the details of the HTTP or
RTSP/RTP protocols. The client library must perform a number of tasks to accomplish data
transfers of a continuous data stream.

1. Download list of other data managers from local data manager, parse list and present
to processing system or operator.

2. Select appropriate data manager and download list of available data streams.

3. Select appropriate data stream and download description of data format and proper
port for delivery.

4. Notify data source of interest in selected data stream.

5. Hookup to data stream.

6. Listen for any changes in data stream parameters.

The client library attempts to make as much of this as possible transparent to the processor
application. The library support several different methods of notifying the application about the
availability of new data. This is intended to support different scheduling methods used by
different application.

3.3. Data Formats
Different processing systems inevitably utilize different formats to represent their data. This
presents a problem for transferring data between two systems. The transfer protocols described
here are independent of the underlying format of the data. Any data format can be supported.
During data transfers, the data format is specified as one of the initial parameters sent between
systems. However, in order to facilitate interoperability, a standard format is desirable. One
such format that has gained acceptance recently is the Common Acoustic Sensor Data Exchange
(CASDE) format. This format has been designed specifically for acoustic sensor array data, but
is sufficiently general to handle many types of raw or processed data. This format will be one of

the standard formats used for both data files and also continuous data streams. The CASDE
format specifies a header that describes the data in the file. For normal data files, this header is
contained at the top of the file. For data streams, this header is stored separately. Clients can
request the header to obtain information on the data contained in the data stream, and then
hookup to the data stream itself using the RTSP commands. Storing the header separately
enables clients to hookup to data streams “on the fly.”

4. SUMMARY
Sharing data between different types of sensor systems and sensor systems on different platforms
holds the promise of providing significant improvements in detection and tracking performance.
The processor interface protocols described in this paper are an attempt to facilitate this data
sharing using Internet standard data transfer protocols. The protocols have been developed with
an eye toward the under-sea warfare community, but are not restricted to that application and
should be applicable to a wide variety of processing systems.

The results of this project will be a specification document describing the processor interface
protocols and how they should be used. In addition, a portable data manager and an interface
library that serve as reference implementations of the specification will be developed. An effort
has been made to ensure that appropriate Internet standards are used for data transfer rather than
creating new standards. Recent work on multimedia broadcasting via the Internet has provided a
capable infrastructure for transmission of continuous data streams and portions of data streams.
In addition, the HTTP protocol has been used wherever possible to support transfer of arbitrary
data files between systems. Use of HTTP enables standard WWW browser tools to view the data
files available on any of the data managers and to navigate between the data managers in the
cluster.

ACKNOWLEDGMENTS
The protocols described in this paper have been designed and developed by the Processor
Interface Protocols working group sponsored by the Full Spectrum Program of SPAWAR PD18.
The authors wish to acknowledge the contributions of the other working group members
including Lisa Blodgett (JHU/APL), Greg Gerding (TRW), gene Hardekopf (TRW), Hilary
Hershey (JHU/APL), Jim Ionata (NUWC), James Lockwood (SSC), Jerry Moons (ORINCON),
Carol Nelepovitz (ORINCON), Bill Payne (MIT/LL), Scot Seto (ORINCON), and Art Teranishi
(ORINCON). The author also wish to acknowledge LT John Schierling for his work in initiating
this effort and promulgating the vision. The first author’s funding has been received via NUWC
contract N66604-95-D-0221, Leonard Cohen, COR, and Jim Ionata, NUWC technical monitor.

REFERENCES

D.L. Hall and J. Llinas, “An Introduction to Multisensor Data Fusion,” Proceedings of the IEEE,
Vol. 85, No. 1, Jan. 1997.

M.E. Liggins II, C.Y. Chong, I. Kadar, M.G. Alford, V. Vannicola, and S. Thomopoulos,
“Distributed Fusion Architectures and Algorithms for Target Tracking,” Proceedings of the
IEEE, Vol. 85, No. 1, Jan. 1997.

K. Richards, W. Collier, R. Matis, and H. Hershey, “Common Acoustic Sensor Data Exchange
(CASDE) File Format (Revision 1.3),” NUWC Document, Report No. ETC:96:08-019B, July
1997.

H. Schulzrinne, A. Rao, and R. Lanphier, “Real Time Streaming Protocol (RTSP),” Internet
Draft draft-ietf-mmusic-rtsp-09.txt, Internet Engineering Task Force, Feb. 1998.

H. Schulzrinne, S. Casner, R. Frederick, and V Jacobson, “RTP: A Transport Protocol for Real-
Time Applications,” Internet Draft draft-avt-rtp-new-00.txt, Internet Engineering Task Force,
Nov. 1997.

